归并排序介绍
将两个的有序数列合并成一个有序数列,我们称之为"归并"。
归并排序(merge sort)就是利用归并思想对数列进行排序。根据具体的实现,归并排序包括"从上往下"和"从下往上"2种方式。
1. 从下往上的归并排序:将待排序的数列分成若干个长度为1的子数列,然后将这些数列两两合并;得到若干个长度为2的有序数列,再将这些数列两两合并;得到若干个长度为4的有序数列,再将它们两两合并;直接合并成一个数列为止。这样就得到了我们想要的排序结果。(参考下面的图片)
2. 从上往下的归并排序:它与"从下往上"在排序上是反方向的。它基本包括3步:
① 分解 -- 将当前区间一分为二,即求分裂点 mid = (low high)/2;
② 求解 -- 递归地对两个子区间a[low...mid] 和 a[mid 1...high]进行归并排序。递归的终结条件是子区间长度为1。
③ 合并 -- 将已排序的两个子区间a[low...mid]和 a[mid 1...high]归并为一个有序的区间a[low...high]。
下面的图片很清晰的反映了"从下往上"和"从上往下"的归并排序的区别。
归并排序图文说明
归并排序(从上往下)代码
/* * 将一个数组中的两个相邻有序区间合并成一个 * * 参数说明: * a -- 包含两个有序区间的数组 * start -- 第1个有序区间的起始地址。 * mid -- 第1个有序区间的结束地址。也是第2个有序区间的起始地址。 * end -- 第2个有序区间的结束地址。 */ void merge(int a[], int start, int mid, int end) { int *tmp = (int *)malloc((end-start 1)*sizeof(int)); // tmp是汇总2个有序区的临时区域 int i = start; // 第1个有序区的索引 int j = mid 1; // 第2个有序区的索引 int k = 0; // 临时区域的索引 while(i <= mid && j <= end) { if (a[i] <= a[j]) tmp[k ] = a[i ]; else tmp[k ] = a[j ]; } while(i <= mid) tmp[k ] = a[i ]; while(j <= end) tmp[k ] = a[j ]; // 将排序后的元素,全部都整合到数组a中。 for (i = 0; i < k; i ) a[start i] = tmp[i]; free(tmp); } /* * 归并排序(从上往下) * * 参数说明: * a -- 待排序的数组 * start -- 数组的起始地址 * endi -- 数组的结束地址 */ void merge_sort_up2down(int a[], int start, int end) { if(a==null || start >= end) return ; int mid = (end start)/2; merge_sort_up2down(a, start, mid); // 递归排序a[start...mid] merge_sort_up2down(a, mid 1, end); // 递归排序a[mid 1...end] // a[start...mid] 和 a[mid...end]是两个有序空间, // 将它们排序成一个有序空间a[start...end] merge(a, start, mid, end); }
从上往下的归并排序采用了递归的方式实现。它的原理非常简单,如下图:
通过"从上往下的归并排序"来对数组{80,30,60,40,20,10,50,70}进行排序时:
1. 将数组{80,30,60,40,20,10,50,70}看作由两个有序的子数组{80,30,60,40}和{20,10,50,70}组成。对两个有序子树组进行排序即可。
2. 将子数组{80,30,60,40}看作由两个有序的子数组{80,30}和{60,40}组成。
将子数组{20,10,50,70}看作由两个有序的子数组{20,10}和{50,70}组成。
3. 将子数组{80,30}看作由两个有序的子数组{80}和{30}组成。
将子数组{60,40}看作由两个有序的子数组{60}和{40}组成。
将子数组{20,10}看作由两个有序的子数组{20}和{10}组成。
将子数组{50,70}看作由两个有序的子数组{50}和{70}组成。
归并排序(从下往上)代码
/* * 对数组a做若干次合并:数组a的总长度为len,将它分为若干个长度为gap的子数组; * 将"每2个相邻的子数组" 进行合并排序。 * * 参数说明: * a -- 待排序的数组 * len -- 数组的长度 * gap -- 子数组的长度 */ void merge_groups(int a[], int len, int gap) { int i; int twolen = 2 * gap; // 两个相邻的子数组的长度 // 将"每2个相邻的子数组" 进行合并排序。 for(i = 0; i 2*gap-1 < len; i =(2*gap)) { merge(a, i, i gap-1, i 2*gap-1); } // 若 i gap-1 < len-1,则剩余一个子数组没有配对。 // 将该子数组合并到已排序的数组中。 if ( i gap-1 < len-1) { merge(a, i, i gap - 1, len - 1); } } /* * 归并排序(从下往上) * * 参数说明: * a -- 待排序的数组 * len -- 数组的长度 */ void merge_sort_down2up(int a[], int len) { int n; if (a==null || len<=0) return ; for(n = 1; n < len; n*=2) merge_groups(a, len, n); }
从下往上的归并排序的思想正好与"从下往上的归并排序"相反。如下图:
通过"从下往上的归并排序"来对数组{80,30,60,40,20,10,50,70}进行排序时:
1. 将数组{80,30,60,40,20,10,50,70}看作由8个有序的子数组{80},{30},{60},{40},{20},{10},{50}和{70}组成。
2. 将这8个有序的子数列两两合并。得到4个有序的子树列{30,80},{40,60},{10,20}和{50,70}。
3. 将这4个有序的子数列两两合并。得到2个有序的子树列{30,40,60,80}和{10,20,50,70}。
4. 将这2个有序的子数列两两合并。得到1个有序的子树列{10,20,30,40,50,60,70,80}。
归并排序的时间复杂度和稳定性
归并排序时间复杂度
归并排序的时间复杂度是o(n*lgn)。
假设被排序的数列中有n个数。遍历一趟的时间复杂度是o(n),需要遍历多少次呢?
归并排序的形式就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的可以得出它的时间复杂度是o(n*lgn)。
归并排序稳定性
归并排序是稳定的算法,它满足稳定算法的定义。
算法稳定性 -- 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!
归并排序实现
下面给出归并排序的三种实现:c、c 和java。这三种实现的原理和输出结果都是一样的,每一种实现中都包括了"从上往下的归并排序"和"从下往上的归并排序"这2种形式。
归并排序c实现
实现代码(merge_sort.c)
/**
* 归并排序:c 语言
*
* @author skywang
* @date 2014/03/12
*/
#include
#include
// 数组长度
#define length(array) ( (sizeof(array)) / (sizeof(array[0])) )
/*
* 将一个数组中的两个相邻有序区间合并成一个
*
* 参数说明:
* a -- 包含两个有序区间的数组
* start -- 第1个有序区间的起始地址。
* mid -- 第1个有序区间的结束地址。也是第2个有序区间的起始地址。
* end -- 第2个有序区间的结束地址。
*/
void merge(int a[], int start, int mid, int end)
{
int *tmp = (int *)malloc((end-start 1)*sizeof(int)); // tmp是汇总2个有序区的临时区域
int i = start; // 第1个有序区的索引
int j = mid 1; // 第2个有序区的索引
int k = 0; // 临时区域的索引
while(i <= mid && j <= end)
{
if (a[i] <= a[j])
tmp[k ] = a[i ];
else
tmp[k ] = a[j ];
}
while(i <= mid)
tmp[k ] = a[i ];
while(j <= end)
tmp[k ] = a[j ];
// 将排序后的元素,全部都整合到数组a中。
for (i = 0; i < k; i )
a[start i] = tmp[i];
free(tmp);
}
/*
* 归并排序(从上往下)
*
* 参数说明:
* a -- 待排序的数组
* start -- 数组的起始地址
* endi -- 数组的结束地址
*/
void merge_sort_up2down(int a[], int start, int end)
{
if(a==null || start >= end)
return ;
int mid = (end start)/2;
merge_sort_up2down(a, start, mid); // 递归排序a[start...mid]
merge_sort_up2down(a, mid 1, end); // 递归排序a[mid 1...end]
// a[start...mid] 和 a[mid...end]是两个有序空间,
// 将它们排序成一个有序空间a[start...end]
merge(a, start, mid, end);
}
/*
* 对数组a做若干次合并:数组a的总长度为len,将它分为若干个长度为gap的子数组;
* 将"每2个相邻的子数组" 进行合并排序。
*
* 参数说明:
* a -- 待排序的数组
* len -- 数组的长度
* gap -- 子数组的长度
*/
void merge_groups(int a[], int len, int gap)
{
int i;
int twolen = 2 * gap; // 两个相邻的子数组的长度
// 将"每2个相邻的子数组" 进行合并排序。
for(i = 0; i 2*gap-1 < len; i =(2*gap))
{
merge(a, i, i gap-1, i 2*gap-1);
}
// 若 i gap-1 < len-1,则剩余一个子数组没有配对。
// 将该子数组合并到已排序的数组中。
if ( i gap-1 < len-1)
{
merge(a, i, i gap - 1, len - 1);
}
}
/*
* 归并排序(从下往上)
*
* 参数说明:
* a -- 待排序的数组
* len -- 数组的长度
*/
void merge_sort_down2up(int a[], int len)
{
int n;
if (a==null || len<=0)
return ;
for(n = 1; n < len; n*=2)
merge_groups(a, len, n);
}
void main()
{
int i;
int a[] = {80,30,60,40,20,10,50,70};
int ilen = length(a);
printf("before sort:");
for (i=0; i
归并排序c 实现
实现代码(mergesort.cpp)
/**
* 归并排序:c
*
* @author skywang
* @date 2014/03/12
*/
#include
using namespace std;
/*
* 将一个数组中的两个相邻有序区间合并成一个
*
* 参数说明:
* a -- 包含两个有序区间的数组
* start -- 第1个有序区间的起始地址。
* mid -- 第1个有序区间的结束地址。也是第2个有序区间的起始地址。
* end -- 第2个有序区间的结束地址。
*/
void merge(int* a, int start, int mid, int end)
{
int *tmp = new int[end-start 1]; // tmp是汇总2个有序区的临时区域
int i = start; // 第1个有序区的索引
int j = mid 1; // 第2个有序区的索引
int k = 0; // 临时区域的索引
while(i <= mid && j <= end)
{
if (a[i] <= a[j])
tmp[k ] = a[i ];
else
tmp[k ] = a[j ];
}
while(i <= mid)
tmp[k ] = a[i ];
while(j <= end)
tmp[k ] = a[j ];
// 将排序后的元素,全部都整合到数组a中。
for (i = 0; i < k; i )
a[start i] = tmp[i];
delete[] tmp;
}
/*
* 归并排序(从上往下)
*
* 参数说明:
* a -- 待排序的数组
* start -- 数组的起始地址
* endi -- 数组的结束地址
*/
void mergesortup2down(int* a, int start, int end)
{
if(a==null || start >= end)
return ;
int mid = (end start)/2;
mergesortup2down(a, start, mid); // 递归排序a[start...mid]
mergesortup2down(a, mid 1, end); // 递归排序a[mid 1...end]
// a[start...mid] 和 a[mid...end]是两个有序空间,
// 将它们排序成一个有序空间a[start...end]
merge(a, start, mid, end);
}
/*
* 对数组a做若干次合并:数组a的总长度为len,将它分为若干个长度为gap的子数组;
* 将"每2个相邻的子数组" 进行合并排序。
*
* 参数说明:
* a -- 待排序的数组
* len -- 数组的长度
* gap -- 子数组的长度
*/
void mergegroups(int* a, int len, int gap)
{
int i;
int twolen = 2 * gap; // 两个相邻的子数组的长度
// 将"每2个相邻的子数组" 进行合并排序。
for(i = 0; i 2*gap-1 < len; i =(2*gap))
{
merge(a, i, i gap-1, i 2*gap-1);
}
// 若 i gap-1 < len-1,则剩余一个子数组没有配对。
// 将该子数组合并到已排序的数组中。
if ( i gap-1 < len-1)
{
merge(a, i, i gap - 1, len - 1);
}
}
/*
* 归并排序(从下往上)
*
* 参数说明:
* a -- 待排序的数组
* len -- 数组的长度
*/
void mergesortdown2up(int* a, int len)
{
int n;
if (a==null || len<=0)
return ;
for(n = 1; n < len; n*=2)
mergegroups(a, len, n);
}
int main()
{
int i;
int a[] = {80,30,60,40,20,10,50,70};
int ilen = (sizeof(a)) / (sizeof(a[0]));
cout << "before sort:";
for (i=0; i
归并排序java实现
实现代码(mergesort.java)
/**
* 归并排序:java
*
* @author skywang
* @date 2014/03/12
*/
public class mergesort {
/*
* 将一个数组中的两个相邻有序区间合并成一个
*
* 参数说明:
* a -- 包含两个有序区间的数组
* start -- 第1个有序区间的起始地址。
* mid -- 第1个有序区间的结束地址。也是第2个有序区间的起始地址。
* end -- 第2个有序区间的结束地址。
*/
public static void merge(int[] a, int start, int mid, int end) {
int[] tmp = new int[end-start 1]; // tmp是汇总2个有序区的临时区域
int i = start; // 第1个有序区的索引
int j = mid 1; // 第2个有序区的索引
int k = 0; // 临时区域的索引
while(i <= mid && j <= end) {
if (a[i] <= a[j])
tmp[k ] = a[i ];
else
tmp[k ] = a[j ];
}
while(i <= mid)
tmp[k ] = a[i ];
while(j <= end)
tmp[k ] = a[j ];
// 将排序后的元素,全部都整合到数组a中。
for (i = 0; i < k; i )
a[start i] = tmp[i];
tmp=null;
}
/*
* 归并排序(从上往下)
*
* 参数说明:
* a -- 待排序的数组
* start -- 数组的起始地址
* endi -- 数组的结束地址
*/
public static void mergesortup2down(int[] a, int start, int end) {
if(a==null || start >= end)
return ;
int mid = (end start)/2;
mergesortup2down(a, start, mid); // 递归排序a[start...mid]
mergesortup2down(a, mid 1, end); // 递归排序a[mid 1...end]
// a[start...mid] 和 a[mid...end]是两个有序空间,
// 将它们排序成一个有序空间a[start...end]
merge(a, start, mid, end);
}
/*
* 对数组a做若干次合并:数组a的总长度为len,将它分为若干个长度为gap的子数组;
* 将"每2个相邻的子数组" 进行合并排序。
*
* 参数说明:
* a -- 待排序的数组
* len -- 数组的长度
* gap -- 子数组的长度
*/
public static void mergegroups(int[] a, int len, int gap) {
int i;
int twolen = 2 * gap; // 两个相邻的子数组的长度
// 将"每2个相邻的子数组" 进行合并排序。
for(i = 0; i 2*gap-1 < len; i =(2*gap))
merge(a, i, i gap-1, i 2*gap-1);
// 若 i gap-1 < len-1,则剩余一个子数组没有配对。
// 将该子数组合并到已排序的数组中。
if ( i gap-1 < len-1)
merge(a, i, i gap - 1, len - 1);
}
/*
* 归并排序(从下往上)
*
* 参数说明:
* a -- 待排序的数组
*/
public static void mergesortdown2up(int[] a) {
if (a==null)
return ;
for(int n = 1; n < a.length; n*=2)
mergegroups(a, a.length, n);
}
public static void main(string[] args) {
int i;
int a[] = {80,30,60,40,20,10,50,70};
system.out.printf("before sort:");
for (i=0; i
上面3种实现的原理和输出结果都是一样的。下面是它们的输出结果:
before sort:80 30 60 40 20 10 50 70
after sort:10 20 30 40 50 60 70 80