problem
suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
you are given a target value to search. if found in the array return itsindex, otherwise return -1.
you may assume no duplicate exists in the array.
example
for [4, 5, 0, 1, 2, 3] and target=1, return 3.
for [4, 5, 0, 1, 2, 3] and target=6, return -1.
challenge
o(logn) time
题解 - 找到有序数组
对于有序数组,使用二分搜索比较方便。分析题中的数组特点,旋转后初看是乱序数组,但仔细一看其实里面是存在两段有序数组的。刚开始做这道题时可能会去比较target和a[mid], 但分析起来异常复杂。
该题较为巧妙的地方在于如何找出旋转数组中的局部有序数组,并使用二分搜索解之。
二分查找,难道主要在于左右边界的确定。
实现分析:
二分法的精髓是,用常数o(1)时间,把问题的规模缩小一半。
旋转排序数组如下:
如果中间在a处:mid >= nums[0]
--------|----------|---------
nums[0] mid
- target > mid or target < nums[0], 丢弃a的左边
- nums[0] <= target < mid, 丢弃a的右边
如果中间在b处: mid < nums[0]
--------|----------|---------
mid nums[0]
- target < mid or target >= nums[0], 丢掉b的右边
- mid < target <= nums[0], 丢弃b的左边
c 代码:
class solution {
public:
int search(const vector& nums,int target) {
int first = 0, last = num.size();
while (first != last) {
const int mid = first (last - first) / 2;
if (nums[mid] == target) {
return mid;
}
if (nums[first] < nums[mid]) {
if (nums[first] <= target) && target < nums[mid]) {
last = mid;
} else {
first = mid 1;
}
} else {
if (nums[mid] < target && target <= nums[last-1]) {
first = mid 1;
} else {
last = mid;
}
}
}
return -1;
}
};
java代码:
public class solution {
/**
*@param a : an integer rotated sorted array
*@param target : an integer to be searched
*return : an integer
*/
public int search(int[] a, int target) {
if (a == null || a.length == 0) return -1;
int lb = 0, ub = a.length - 1;
while (lb 1 < ub) {
int mid = lb (ub - lb) / 2;
if (a[mid] == target) return mid;
if (a[mid] > a[lb]) {
// case1: numbers between lb and mid are sorted
if (a[lb] <= target && target <= a[mid]) {
ub = mid;
} else {
lb = mid;
}
} else {
// case2: numbers between mid and ub are sorted
if (a[mid] <= target && target <= a[ub]) {
lb = mid;
} else {
ub = mid;
}
}
}
if (a[lb] == target) {
return lb;
} else if (a[ub] == target) {
return ub;
}
return -1;
}
}