01、前言
我们常用缓存提升数据查询速度,由于缓存容量有限,当缓存容量到达上限,就需要删除部分数据挪出空间,这样新数据才可以添加进来。缓存数据不能随机删除,一般情况下我们需要根据某种算法删除缓存数据。常用淘汰算法有 lru,lfu,fifo,这篇文章我们聊聊 lru 算法。
02、lru 简介
lru 是 least recently used 的缩写,这种算法认为最近使用的数据是热门数据,下一次很大概率将会再次被使用。而最近很少被使用的数据,很大概率下一次不再用到。当缓存容量的满时候,优先淘汰最近很少使用的数据。
假设现在缓存内部数据如图所示:
这里我们将列表第一个节点称为头结点,最后一个节点为尾结点。
当调用缓存获取 key=1 的数据,lru 算法需要将 1 这个节点移动到头结点,其余节点不变,如图所示。
然后我们插入一个 key=8 节点,此时缓存容量到达上限,所以加入之前需要先删除数据。由于每次查询都会将数据移动到头结点,未被查询的数据就将会下沉到尾部节点,尾部的数据就可以认为是最少被访问的数据,所以删除尾结点的数据。
然后我们直接将数据添加到头结点。
这里总结一下 lru 算法具体步骤:
- 新数据直接插入到列表头部
- 缓存数据被命中,将数据移动到列表头部
- 缓存已满的时候,移除列表尾部数据。
03、lru 算法实现
上面例子中可以看到,lru 算法需要添加头节点,删除尾结点。而链表添加节点/删除节点时间复杂度 o(1),非常适合当做存储缓存数据容器。但是不能使用普通的单向链表,单向链表有几点劣势:
- 每次获取任意节点数据,都需要从头结点遍历下去,这就导致获取节点复杂度为 o(n)。
- 移动中间节点到头结点,我们需要知道中间节点前一个节点的信息,单向链表就不得不再次遍历获取信息。
针对以上问题,可以结合其他数据结构解决。
使用散列表存储节点,获取节点的复杂度将会降低为 o(1)。节点移动问题可以在节点中再增加前驱指针,记录上一个节点信息,这样链表就从单向链表变成了双向链表。
综上使用双向链表加散列表结合体,数据结构如图所示:
在双向链表中特意增加两个『哨兵』节点,不用来存储任何数据。使用哨兵节点,增加/删除节点的时候就可以不用考虑边界节点不存在情况,简化编程难度,降低代码复杂度。
lru 算法实现代码如下,为了简化 key ,val 都认为 int 类型。
public class lrucache {
entry head, tail;
int capacity;
int size;
map cache;
public lrucache(int capacity) {
this.capacity = capacity;
// 初始化链表
initlinkedlist();
size = 0;
cache = new hashmap<>(capacity 2);
}
/**
* 如果节点不存在,返回 -1.如果存在,将节点移动到头结点,并返回节点的数据。
*
* @param key
* @return
*/
public int get(int key) {
entry node = cache.get(key);
if (node == null) {
return -1;
}
// 存在移动节点
movetohead(node);
return node.value;
}
/**
* 将节点加入到头结点,如果容量已满,将会删除尾结点
*
* @param key
* @param value
*/
public void put(int key, int value) {
entry node = cache.get(key);
if (node != null) {
node.value = value;
movetohead(node);
return;
}
// 不存在。先加进去,再移除尾结点
// 此时容量已满 删除尾结点
if (size == capacity) {
entry lastnode = tail.pre;
deletenode(lastnode);
cache.remove(lastnode.key);
size--;
}
// 加入头结点
entry newnode = new entry();
newnode.key = key;
newnode.value = value;
addnode(newnode);
cache.put(key, newnode);
size ;
}
private void movetohead(entry node) {
// 首先删除原来节点的关系
deletenode(node);
addnode(node);
}
private void addnode(entry node) {
head.next.pre = node;
node.next = head.next;
node.pre = head;
head.next = node;
}
private void deletenode(entry node) {
node.pre.next = node.next;
node.next.pre = node.pre;
}
public static class entry {
public entry pre;
public entry next;
public int key;
public int value;
public entry(int key, int value) {
this.key = key;
this.value = value;
}
public entry() {
}
}
private void initlinkedlist() {
head = new entry();
tail = new entry();
head.next = tail;
tail.pre = head;
}
public static void main(string[] args) {
lrucache cache = new lrucache(2);
cache.put(1, 1);
cache.put(2, 2);
system.out.println(cache.get(1));
cache.put(3, 3);
system.out.println(cache.get(2));
}
}
04、lru 算法分析
缓存命中率是缓存系统的非常重要指标,如果缓存系统的缓存命中率过低,将会导致查询回流到数据库,导致数据库的压力升高。
结合以上分析 lru 算法优缺点。
lru 算法优势在于算法实现难度不大,对于对于热点数据, lru 效率会很好。
lru 算法劣势在于对于偶发的批量操作,比如说批量查询历史数据,就有可能使缓存中热门数据被这些历史数据替换,造成缓存污染,导致缓存命中率下降,减慢了正常数据查询。
05、lru 算法改进方案
以下方案来源与 mysql innodb lru 改进算法
将链表拆分成两部分,分为热数据区,与冷数据区,如图所示。
改进之后算法流程将会变成下面一样:
- 访问数据如果位于热数据区,与之前 lru 算法一样,移动到热数据区的头结点。
- 插入数据时,若缓存已满,淘汰尾结点的数据。然后将数据插入冷数据区的头结点。
- 处于冷数据区的数据每次被访问需要做如下判断:若该数据已在缓存中超过指定时间,比如说 1 s,则移动到热数据区的头结点。若该数据存在在时间小于指定的时间,则位置保持不变。
对于偶发的批量查询,数据仅仅只会落入冷数据区,然后很快就会被淘汰出去。热门数据区的数据将不会受到影响,这样就解决了 lru 算法缓存命中率下降的问题。
其他改进方法还有 lru-k,2q,lirs 算法,感兴趣同学可以自行查阅。