楔子
我们知道对象被创建,主要有两种方式,一种是通过python/c api,另一种是通过调用类型对象。对于内置类型的实例对象而言,这两种方式都是支持的,比如列表,我们即可以通过[]创建,也可以通过list(),前者是python/c api,后者是调用类型对象。
但对于自定义类的实例对象而言,我们只能通过调用类型对象的方式来创建。而一个对象如果可以被调用,那么这个对象就是callable,否则就不是callable。
而决定一个对象是不是callable,就取决于其对应的类型对象中是否定义了某个方法。如果从 python 的角度看的话,这个方法就是 __call__,从解释器角度看的话,这个方法就是 tp_call。
从 python 的角度看对象的调用
调用 int、str、tuple 可以创建一个整数、字符串、元组,调用自定义的类也可以创建出相应的实例对象,说明类型对象是可调用的,也就是callable。那么这些类型对象(int、str、tuple、class等等)的类型对象(type)内部一定有 __call__ 方法。
# int可以调用
# 那么它的类型对象、也就是元类(type), 内部一定有__call__方法
print(hasattr(type, "__call__")) # true
# 而调用一个对象,等价于调用其类型对象的 __call__ 方法
# 所以 int(3.14)实际就等价于如下
print(type.__call__(int, 3.14)) # 3
注意:这里描述的可能有一些绕,我们说 int、str、float 这些都是类型对象(简单来说就是类),而 123、"你好"、3.14 是其对应的实例对象,这些都没问题。但type是不是类型对象,显然是的,虽然我们称呼它为元类,但它也是类型对象,如果 print(type) 显示的也是一个类。
那么相对 type 而言,int、str、float 是不是又成了实例对象呢?因为它们的类型是 type。
所以 class 具有二象性:
- 如果站在实例对象(如:123、"satori"、[]、3.14)的角度上,它是类型对象
- 如果站在 type 的角度上,它是实例对象
同理 type 的类型是也是 type,那么 type 既是 type 的类型对象,type 也是 type 的实例对象。虽然这里描述的会有一些绕,但应该不难理解,并且为了避免后续的描述出现歧义,这里我们做一个申明:
- 整数、浮点数、字符串等等,我们称之为实例对象
- int、float、str、dict,以及我们自定义的类,我们称之为类型对象
- type 虽然也是类型对象,但我们称它为元类
所以 type 的内部有 __call__ 方法,那么说明类型对象都是可调用的,因为调用类型对象就是调用 type 的 __call__ 方法。而实例对象能否调用就不一定了,这取决于它的类型对象中是否定义了 __call__ 方法,因为调用一个对象,本质上是执行其类型对象内部的 __call__ 方法。
class a:
pass
a = a()
# 因为我们自定义的类 a 里面没有 __call__
# 所以 a 是不可以被调用的
try:
a()
except exception as e:
# 告诉我们 a 的实例对象不可以被调用
print(e) # 'a' object is not callable
# 如果我们给 a 设置了一个 __call__
type.__setattr__(a, "__call__", lambda self: "这是__call__")
# 发现可以调用了
print(a()) # 这是__call__
我们看到这就是动态语言的特性,即便在类创建完毕之后,依旧可以通过type进行动态设置,而这在静态语言中是不支持的。所以type是所有类的元类,它控制了我们自定义类的生成过程,type这个古老而又强大的类可以让我们玩出很多新花样。
但是对于内置的类,type是不可以对其动态增加、删除或者修改属性的,因为内置的类在底层是静态定义好的。因为从源码中我们看到,这些内置的类、包括元类,它们都是pytypeobject对象,在底层已经被声明为全局变量了,或者说它们已经作为静态类存在了。所以type虽然是所有类型对象的元类,但是只有在面对我们自定义的类,type才具有增删改的能力。
而且我们也解释过,python 的动态性是解释器将字节码翻译成 c 代码的时候动态赋予的,因此给类动态设置属性或方法只适用于动态类,也就是在 py 文件中使用 class 关键字定义的类。
而对于静态类、或者编写扩展模块时定义的扩展类(两者是等价的),它们在编译之后已经是指向 c 一级的数据结构了,不需要再被解释器解释了,因此解释器自然也就无法在它们身上动手脚,毕竟彪悍的人生不需要解释。
try:
type.__setattr__(dict, "__call__", lambda self: "这是__call__")
except exception as e:
print(e) # can't set attributes of built-in/extension type 'dict'
我们看到抛异常了,提示我们不可以给内置/扩展类型dict设置属性,因为它们绕过了解释器解释执行这一步,所以其属性不能被动态设置。
同理其实例对象亦是如此,静态类的实例对象也不可以动态设置属性:
class girl:
pass
g = girl()
g.name = "古明地觉"
# 实例对象我们也可以手动设置属性
print(g.name) # 古明地觉
lst = list()
try:
lst.name = "古明地觉"
except exception as e:
# 但是内置类型的实例对象是不可以的
print(e) # 'list' object has no attribute 'name'
可能有人奇怪了,为什么列表不行呢?答案是内置类型的实例对象没有__dict__属性字典,因为相关属性或方法底层已经定义好了,不可以动态添加。如果我们自定义类的时候,设置了__slots__,那么效果和内置的类是相同的。
当然了,我们后面会介绍如何通过动态修改解释器来改变这一点,举个栗子,不是说静态类无法动态设置属性吗?下面我就来打自己脸:
import gc
try:
type.__setattr__(list, "ping", "pong")
except typeerror as e:
print(e) # can't set attributes of built-in/extension type 'list'
# 我们看到无法设置,那么我们就来改变这一点
attrs = gc.get_referents(tuple.__dict__)[0]
attrs["ping"] = "pong"
print(().ping) # pong
attrs["append"] = lambda self, item: self (item,)
print(
().append(1).append(2).append(3)
) # (1, 2, 3)
我脸肿了。好吧,其实这只是我们玩的一个小把戏,当我们介绍完整个 cpython 的时候,会来专门聊一聊如何动态修改解释器。比如:让元组变得可修改,让 python 真正利用多核等等。
从解释器的角度看对象的调用
我们以内置类型 float 为例,我们说创建一个 pyfloatobject,可以通过3.14或者float(3.14)的方式。前者使用python/c api创建,3.14直接被解析为 c 一级数据结构,也就是pyfloatobject实例;后者使用类型对象创建,通过对float进行一个调用、将3.14作为参数,最终也得到指向c一级数据结构pyfloatobject实例。
python/c api的创建方式我们已经很清晰了,就是根据值来推断在底层应该对应哪一种数据结构,然后直接创建即可。我们重点看一下通过类型调用来创建实例对象的方式。
如果一个对象可以被调用,它的类型对象中一定要有tp_call(更准确的说成员tp_call的值是一个函数指针,不可以是0),而pyfloat_type是可以调用的,这就说明pytype_type内部的tp_call是一个函数指针,这在python的层面上我们已经验证过了,下面我们再来通过源码看一下。
//typeobject.c
pytypeobject pytype_type = {
pyvarobject_head_init(&pytype_type, 0)
"type", /* tp_name */
sizeof(pyheaptypeobject), /* tp_basicsize */
sizeof(pymemberdef), /* tp_itemsize */
(destructor)type_dealloc, /* tp_dealloc */
//... /* tp_hash */
(ternaryfunc)type_call, /* tp_call */
//...
}
我们看到在实例化pytype_type的时候pytypeobject内部的成员tp_call被设置成了type_call。这是一个函数指针,当我们调用pyfloat_type的时候,会触发这个type_call指向的函数。
因此 float(3.14) 在c的层面上等价于:
(&pyfloat_type) -> ob_type -> tp_call(&pyfloat_type, args, kwargs);
// 即:
(&pytype_type) -> tp_call(&pyfloat_type, args, kwargs);
// 而在创建 pytype_type 的时候,给 tp_call 成员传递的是 type_call
// 因此最终相当于
type_call(&pyfloat_type, args, kwargs)
如果用 python 来演示这一过程的话:
# float(3.14),等价于
f1 = float.__class__.__call__(float, 3.14)
# 等价于
f2 = type.__call__(float, 3.14)
print(f1, f2) # 3.14 3.14
这就是 float(3.14) 的秘密,相信list、dict在实例化的时候是怎么做的,你已经猜到了,做法是相同的。
# lst = list("abcd")
lst = list.__class__.__call__(list, "abcd")
print(lst) # ['a', 'b', 'c', 'd']
# dct = dict([("name", "古明地觉"), ("age", 17)])
dct = dict.__class__.__call__(dict, [("name", "古明地觉"), ("age", 17)])
print(dct) # {'name': '古明地觉', 'age': 17}
最后我们来围观一下 type_call 函数,我们说 type 的 __call__ 方法,在底层对应的是 type_call 函数,它位于object/typeobject.c中。
static pyobject *
type_call(pytypeobject *type, pyobject *args, pyobject *kwds)
{
// 如果我们调用的是 float
// 那么显然这里的 type 就是 &pyfloat_type
// 这里是声明一个pyobject *
// 显然它是要返回的实例对象的指针
pyobject *obj;
// 这里会检测 tp_new是否为空,tp_new是什么估计有人已经猜到了
// 我们说__call__对应底层的tp_call
// 显然__new__对应底层的tp_new,这里是为实例对象分配空间
if (type->tp_new == null) {
// tp_new 是一个函数指针,指向具体的构造函数
// 如果 tp_new 为空,说明它没有构造函数
// 因此会报错,表示无法创建其实例
pyerr_format(pyexc_typeerror,
"cannot create '%.100s' instances",
type->tp_name);
return null;
}
//通过tp_new分配空间
//此时实例对象就已经创建完毕了,这里会返回其指针
obj = type->tp_new(type, args, kwds);
//类型检测,暂时不用管
obj = _py_checkfunctionresult((pyobject*)type, obj, null);
if (obj == null)
return null;
//我们说这里的参数type是类型对象,但也可以是元类
//元类也是由pytypeobject结构体实例化得到的
//元类在调用的时候执行的依旧是type_call
//所以这里是检测type指向的是不是pytype_type
//如果是的话,那么实例化得到的obj就不是实例对象了,而是类型对象
//要单独检测一下
if (type == &pytype_type &&
pytuple_check(args) && pytuple_get_size(args) == 1 &&
(kwds == null ||
(pydict_check(kwds) && pydict_get_size(kwds) == 0)))
return obj;
//tp_new应该返回相应类型对象的实例对象(的指针)
//但如果不是,就直接将这里的obj返回
//此处这么做可能有点难理解,我们一会细说
if (!pytype_issubtype(py_type(obj), type))
return obj;
//拿到obj的类型
type = py_type(obj);
//执行 tp_init
//显然这个tp_init就是__init__函数
//这与python中类的实例化过程是一致的。
if (type->tp_init != null) {
//将tp_new返回的对象作为self,执行 tp_init
int res = type->tp_init(obj, args, kwds);
if (res < 0) {
//执行失败,将引入计数减1,然后将obj设置为null
assert(pyerr_occurred());
py_decref(obj);
obj = null;
}
else {
assert(!pyerr_occurred());
}
}
//返回obj
return obj;
}
因此从上面我们可以看到关键的部分有两个:
- 调用类型对象的 tp_new 指向的函数为实例对象申请内存
- 调用 tp_init 指向的函数为实例对象进行初始化,也就是设置属性
所以这对应python中的__new__和__init__,我们说__new__是为实例对象开辟一份内存,然后返回指向这片内存(对象)的指针,并且该指针会自动传递给__init__中的self。
class girl:
def __new__(cls, name, age):
print("__new__方法执行啦")
# 写法非常固定
# 调用object.__new__(cls)就会创建girl的实例对象
# 因此这里的cls指的就是这里的girl,注意:一定要返回
# 因为__new__会将自己的返回值交给__init__中的self
return object.__new__(cls)
def __init__(self, name, age):
print("__init__方法执行啦")
self.name = name
self.age = age
g = girl("古明地觉", 16)
print(g.name, g.age)
"""
__new__方法执行啦
__init__方法执行啦
古明地觉 16
"""
__new__里面的参数要和__init__里面的参数保持一致,因为我们会先执行__new__,然后解释器会将__new__的返回值和我们传递的参数组合起来一起传递给__init__。因此__new__里面的参数除了cls之外,一般都会写*args和**kwargs。
然后再回过头来看一下type_call中的这几行代码:
static pyobject *
type_call(pytypeobject *type, pyobject *args, pyobject *kwds)
{
//......
//......
if (!pytype_issubtype(py_type(obj), type))
return obj;
//......
//......
}
我们说tp_new应该返回该类型对象的实例对象,而且一般情况下我们是不写__new__的,会默认执行。但是我们一旦重写了,那么必须要手动返回object.__new__(cls)。可如果我们不返回,或者返回其它的话,会怎么样呢?
class girl:
def __new__(cls, *args, **kwargs):
print("__new__方法执行啦")
instance = object.__new__(cls)
# 打印看看instance到底是个什么东东
print("instance:", instance)
print("type(instance):", type(instance))
# 正确做法是将instance返回
# 但是我们不返回, 而是返回个 123
return 123
def __init__(self, name, age):
print("__init__方法执行啦")
g = girl()
"""
__new__方法执行啦
instance: <__main__.girl object at 0x000002c0f16fa1f0>
type(instance):
"""
这里面有很多可以说的点,首先就是 __init__ 里面需要两个参数,但是我们没有传,却还不报错。原因就在于这个 __init__ 压根就没有执行,因为 __new__ 返回的不是 girl 的实例对象。
通过打印 instance,我们知道了object.__new__(cls) 返回的就是 cls 的实例对象,而这里的cls就是girl这个类本身。我们必须要返回instance,才会执行对应的__init__,否则__new__直接就返回了。我们在外部来打印一下创建的实例对象吧,看看结果:
class girl:
def __new__(cls, *args, **kwargs):
return 123
def __init__(self, name, age):
print("__init__方法执行啦")
g = girl()
print(g, type(g)) # 123
我们看到打印的是123,所以再次总结一些tp_new和tp_init之间的区别,当然也对应__new__和__init__的区别:
- tp_new:为该类型对象的实例对象申请内存,在python的__new__方法中通过object.__new__(cls)的方式申请,然后将其返回
- tp_init:tp_new的返回值会自动传递给self,然后为self绑定相应的属性,也就是进行实例对象的初始化
但如果tp_new返回的不是对应类型的实例对象的指针,比如type_call中第一个参数接收的&pyfloat_type,但是tp_new中返回的却是pylongobject *,所以此时就不会执行tp_init。
以上面的代码为例,我们girl中的__new__应该返回girl的实例对象才对,但实际上返回了整型,因此类型不一致,所以不会执行__init__。
下面我们可以做总结了,通过类型对象去创建实例对象的整体流程如下:
- 第一步:获取类型对象的类型对象,说白了就是元类,执行元类的 tp_call 指向的函数,即 type_call
- 第二步:type_call 会调用该类型对象的 tp_new 指向的函数,如果 tp_new 为 null,那么会到 tp_base 指定的父类里面去寻找 tp_new。在新式类当中,所有的类都继承自 object,因此最终会执行 object 的 __new__。然后通过访问对应类型对象中的 tp_basicsize 信息,这个信息记录着该对象的实例对象需要占用多大的内存,继而完成申请内存的操作
- 调用type_new 创建完对象之后,就会进行实例对象的初始化,会将指向这片空间的指针交给 tp_init,但前提是 tp_new 返回的实例对象的类型要一致。
所以都说 python 在实例化的时候会先调用 __new__ 方法,再调用 __init__ 方法,相信你应该知道原因了,因为在源码中先调用 tp_new、再调用的 tp_init。
static pyobject *
type_call(pytypeobject *type, pyobject *args, pyobject *kwds)
{
//调用__new__方法, 拿到其返回值
obj = type->tp_new(type, args, kwds);
if (type->tp_init != null) {
//将__new__返回的实例obj,和args、kwds组合起来
//一起传给 __init__
//其中 obj 会传给 self,
int res = type->tp_init(obj, args, kwds);
//......
return obj;
}
所以源码层面表现出来的,和我们在 python 层面看到的是一样的。
小结
到此,我们就从 python 和解释器两个层面了解了对象是如何调用的,更准确的说我们是从解释器的角度对 python 层面的知识进行了验证,通过 tp_new 和 tp_init 的关系,来了解 __new__ 和 __init__ 的关系。
另外,对象调用远不止我们目前说的这么简单,更多的细节隐藏在了幕后,只不过现在没办法将其一次性全部挖掘出来。