菜鸟笔记
提升您的技术认知

linux僵尸进程处置-ag真人游戏

一、什么是僵死进程?

一般情况下,程序调用exit(包括_exit和_exit,它们的区别这里不做解释),它的绝大多数内存和相关的资源已经被内核释放掉,但是在进程表中这个进程项(entry)还保留着(进程id,退出状态,占用的资源等等),你可能会问,为什么这么麻烦,直接释放完资源不就行了吗?这是因为有时它的父进程想了解它的退出状态。在子进程退出但还未被其父进程“收尸”之前,该子进程就是僵死进程,或者僵尸进程。如果父进程先于子进程去世,那么子进程将被init进程收养,这个时候init就是这个子进程的父进程。

所以一旦出现父进程长期运行,而又没有显示调用wait或者waitpid,同时也没有处理sigchld信号,这个时候init进程就没有办法来替子进程收尸,这个时候,子进程就真的成了“僵尸”了。

二、僵死进程与孤儿进程的区别?

回答这个问题很简单,就是爸爸(父进程)和儿子(子进程)谁先死的问题!

如果当儿子还在世的时候,爸爸去世了,那么儿子就成孤儿了,这个时候儿子就会被init收养,换句话说,init进程充当了儿子的爸爸,所以等到儿子去世的时候,就由init进程来为其收尸。

如果当爸爸还活着的时候,儿子死了,这个时候如果爸爸不给儿子收尸,那么儿子就会变成僵尸进程。

三、僵死进程的危害?

    僵死进程的pid还占据着,意味着海量的子进程会占据满进程表项,会使后来的进程无法fork.
    僵死进程的内核栈无法被释放掉(1k 或者 2k大小),为啥会留着它的内核栈,因为在栈的最低端,有着thread_info结构,它包含着 struct_task 结构,这里面包含着一些退出信息。

四、避免僵死进程的方法

网上搜了下,总结有三种方方法:

    ① 程序中显示的调用signal(sigchld, sig_ign)来忽略sigchld信号,这样子进程结束后,由内核来wai和释放资源
    ② fork两次,第一次fork的子进程在fork完成后直接退出,这样第二次fork得到的子进程就没有爸爸了,它会自动被老祖宗init收养,init会负责释放它的资源,这样就不会有“僵尸”产生了
    ③ 对子进程进行wait,释放它们的资源,但是父进程一般没工夫在那里守着,等着子进程的退出,所以,一般使用信号的方式来处理,在收到sigchld信号的时候,在信号处理函数中调用wait操作来释放他们的资源。

五、对每个避免僵死进程方法的解析与总结

首先我们让我们来看一个生成僵尸进程的程序zombie.c如下:

#include    
#include   #include     int main(int argc, const char *argv[])   
{      int i;   
    pid_t pid;        for (i = 0; i < 10; i  ) {   
        if ((pid = fork()) == 0)    /* child */   
            _exit(0);   
    }      sleep(10);   
      exit(exit_success);  } 

运行程序,在10s睡眠期间使用ps查看进程,你会发现有10个标记为“defunct”的僵尸进程:

接下来看第一种方法,程序avoid_zombie1.c如下:

#include    
#include   #include   #include   #include     int main(int argc, const char *argv[])   
{      pid_t pid;        if (sig_err == signal(sigchld, sig_ign)) {   
        perror("signal error");   
        _exit(exit_failure);      }        while (1) {   
        if ((pid = fork()) == 0)    /* child */   
            _exit(0);   
    }        exit(exit_success);  }   

程序运行期间通过ps命令的确没有发现僵尸进程的存在。

在man文档中有这段话:

note that even though the default disposition of sigchld is "ignore", explicitly setting the disposition to sig_ign results in different treatment of zombie process children.

意思是说尽管系统对信号sigchld的默认处理就是“ignore”,但是显示的设置成sig_ign的处理方式在在这里会表现不同的处理方式(即子进程结束后,资源由系统自动收回,所以不会产生僵尸进程),这是信号sigchld与其他信号的不同之处。

在man文档中同样有这样一段话:

the original posix standard left the behavior of setting sigchld to sig_ign unspecified. 看来这个方法不是每个平台都使用,尤其在一些老的系统中,兼容性不是很好,所以如果你在写一个可移植的程序的话,不推荐使用这个方法。

第二种方法,即通过两次fork来避免僵尸进程,我们来看一个例子avoid_zombie2.c:

#include    
#include   #include   #include   #include     int main(int argc, const char *argv[])   
{      pid_t pid;        while (1) {   
        if ((pid = fork()) == 0) {  /* child */   
            if ((pid = fork()) > 0)   
                _exit(0);   
            sleep(1);   
            printf("grandchild, parent id = %ld\n",   
                            (long)getppid());              _exit(0);   
        }          if (waitpid(-1, null, 0) != pid) {   
            perror("waitpid error");   
            _exit(exit_failure);          }      }        exit(exit_success);  }   

这的确是个有效的办法,但是我想这个方法不适宜网络并发服务器中,应为fork的效率是不高的。

最后来看第三种方法, 也是最通用的方法

先看我们的测试程序avoid_zombie3.c

#include    
#include   #include   #include    
#include   #include   #include   #include   #include       void avoid_zombies_handler(int signo)   
{      pid_t pid;      int exit_status;   
    int saved_errno = errno;   
      while ((pid = waitpid(-1, &exit_status, wnohang)) > 0) {   
        /* do nothing */   
    }        errno = saved_errno;  }    int main(int argc, char *argv[])   
{      pid_t pid;      int status;   
    struct sigaction child_act;    
      memset(&child_act, 0, sizeof(struct sigaction));   
    child_act.sa_handler = avoid_zombies_handler;      child_act.sa_flags = sa_restart | sa_nocldstop;       sigemptyset(&child_act.sa_mask);      if (sigaction(sigchld, &child_act, null) == -1) {   
        perror("sigaction error");   
        _exit(exit_failure);      }        while (1) {   
        if ((pid = fork()) == 0) {  /* child process */   
            _exit(0);   
        } else if (pid > 0) {        /* parent process */   
        }      }            _exit(exit_success);  } 

首先需要知道三点:

    1. 当某个信号的信号处理函数被调用时,该信号会被操作系统阻塞(默认sa_flags不设置sa_nodefer标志)。
    2.当某个信号的信号处理函数被调用时,该信号阻塞时,该信号又多次发生,那么操作系统并不将它们排队,而是只保留第一次的,后续的被抛弃。
    3. wait系列函数与信号sigchld是没有任何关系的,即wait系列函数并不是信号sigchld驱动的。

这个时候,肯定有人有疑问了,既然会丢弃信号,那怎么保证可以收回所有的僵尸进程呢?

关于这个问题,我们可以这样来理解,当子进程结束时,不管有没有产生sigchld信号,或者子进程产生了sigchld信号,而不管父进程有没有收到sigchld信号,这都与子进程已经终止这个事实无关,就是说,子进程终止与信号其实没有任何关系,只是操作系统在子进程终止时会发送信号sigchld给父进程,告之其子进程终止的消息,这样的话,父进程就可以做相应的操作了。而wait系列函数的目的就是收回子进程终止时残留在进程列表中的信息,所以任何时候调用while ((pid = waitpid(-1, &exit_status, wnohang)) > 0)都可以收回所有的僵尸进程信息(可以参考下面的程序)。但是这里为什么放在信号处理函数中处理了,这样做的原因是:子进程什么时候结束是个异步事件,而信号机制就是用来处理异步事件的,所以当子进程结束时,可以迅速的收回其残余信息,这样系统中就不会积累大量的僵尸进程了。

也可以这样来理解:系统把所有的僵尸进程串在一起形成一个僵尸进程链表,而while ((pid = waitpid(-1, &exit_status, wnohang)) > 0)就是来清空这个链表的,直到waitpid()返回0,表明已经没有僵尸进程了,或者返回-1,表明出错(当错误码errno为echild的时候同样表明已经不存在僵尸进程了)。

了解了以上知识点,就能理解为什么while ((pid = waitpid(-1, &exit_status, wnohang)) > 0)能够回收所有的僵尸进程了。

我们可以在上面的信号处理函数中加入相应的打印信息:

static int num1 = 0   
static int num2 = 0;   
void avoid_zombies_handler(int signo)   
{      pid_t pid;   
    int exit_status;   
    int saved_errno = errno;   
      printf("num1 = %d\n",   num1);   
    while ((pid = waitpid(-1, &exit_status, wnohang)) > 0) {   
        printf("num2 = %d\n",   num2);   
    }        errno = saved_errno;  }  

打印的结果你会发现,当num1递增1的时候,即每调用一次信号处理函数,num2一般会递增很多,即while循环了很多次,所以尽管有的sigchld信号被丢弃了,但是我们不用担心子进程的残余信息会收不回来。退出while循环时,证明此时系统中已经没有僵尸进程了,所以退出信号处理函数后,阻塞的唯一sigchld信号会再次触发该信号处理函数,这样我们就不用担心了。我们不防做个最坏的打算,即之前的信号全部被丢弃了,只有最后一次的sigchld信号被捕获,从而触发了信号处理函数,这样我们也不用担心,因为while循环会一次性收回全部的僵尸进程信息,只是这次循环的次数要多得多罢了,当然这只是假设,一般系统不会出现这样的情况(可以参考本文最后一个程序事例)。

为了证明wait系统函数与信号sigchld没有任何关系,我们可以做个简单的实验,代码如下:

#include    
#include    
#include    
#include    
#include    
  int main(int argc, char *argv[])  {      int i;      pid_t pid;        for (i = 0; i < 5; i  ) { if ((pid = fork()) == 0) /* child */ _exit(0); } sleep(10); while (waitpid(-1, null, wnohang) > 0) {   
        /* do nothing */      }      sleep(10);        _exit(exit_success);  }   

以下是打印结果:

可以看到第一次sleep时系统中积累了5个僵尸进程,第二次sleep时,那5个僵尸进程都被收回了。这个也明显的看到了使用信号处理函数的优势,即可以保证系统不会积累大量的僵尸进程,它可以迅速的清理掉系统中的僵尸进程。

网站地图