基数树
内核中的基树的节点,使用struct radix_tree_node来表示,其源代码如下:
struct radix_tree_node {
unsigned int height; /* height from the bottom */
unsigned int count; /* 子节点的个数 */
union {
struct radix_tree_node *parent; /* used when ascending tree */
struct rcu_head rcu_head; /* used when freeing node */
};
void __rcu *slots[radix_tree_map_size];
unsigned long tags[radix_tree_max_tags][radix_tree_tag_longs];
};
/* root tags are stored in gfp_mask, shifted by __gfp_bits_shift */
struct radix_tree_root {
unsigned int height;
gfp_t gfp_mask;
struct radix_tree_node __rcu *rnode;
};
slots是指向各个孩子节点的指针,radix_tree_map_size通常为64(跟宏定义有关,我们以64为例来说明)。
tags顾名思义是标签,代表此节点的所有孩子节点的标签。tags是二维数组,radix_tree_max_tags定义为3,即最多支持3种标签。radix_tree_tag_longs的长度使得可以放下所有子节点的tag(一个tag占1位)。
一个典型的基树如下图所示:
不得不说,本来简单的数据结构,加上了rcu的机制后,总是有点难以理解。
初始化
跟linux内核中其它的数据结构类似,两种初始化方式:
#define radix_tree(name, mask) \
struct radix_tree_root name = radix_tree_init(mask)
#define init_radix_tree(root, mask) \
do { \
(root)->height = 0; \
(root)->gfp_mask = (mask); \
(root)->rnode = null; \
} while (0)
查找
/*
* is_slot == 1 : search for the slot.
* is_slot == 0 : search for the node.
*/
static void *radix_tree_lookup_element(struct radix_tree_root *root,
unsigned long index, int is_slot)
{
unsigned int height, shift;
struct radix_tree_node *node, **slot;
node = rcu_dereference_raw(root->rnode);
if (node == null)
return null;
if (!radix_tree_is_indirect_ptr(node)) {
if (index > 0)
return null;
return is_slot ? (void *)&root->rnode : node;
}
node = indirect_to_ptr(node);
height = node->height;
if (index > radix_tree_maxindex(height))
return null;
shift = (height-1) * radix_tree_map_shift;
do {
slot = (struct radix_tree_node **)
(node->slots ((index>>shift) & radix_tree_map_mask));
node = rcu_dereference_raw(*slot);
if (node == null)
return null;
shift -= radix_tree_map_shift;
height--;
} while (height > 0);
return is_slot ? (void *)slot : indirect_to_ptr(node);
}
/**
* radix_tree_lookup - perform lookup operation on a radix tree
* @root: radix tree root
* @index: index key
*
* lookup the item at the position @index in the radix tree @root.
*
* this function can be called under rcu_read_lock, however the caller
* must manage lifetimes of leaf nodes (eg. rcu may also be used to free
* them safely). no rcu barriers are required to access or modify the
* returned item, however.
*/
void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
{
return radix_tree_lookup_element(root, index, 0);
}
查找的过程,就是把index从高位开始,每6位(以64位机器为例)为一个单位,分隔成一个个的slot index,然后从radix树的根往下搜索的过程,整体还是比较好理解的。暂时忽略indirect_to_prt,rcu_dereference_raw这几个函数,这不影响对整体流程的理解。
插入
/**
* radix_tree_insert - insert into a radix tree
* @root: radix tree root
* @index: index key
* @item: item to insert
*
* insert an item into the radix tree at position @index.
*/
int radix_tree_insert(struct radix_tree_root *root,
unsigned long index, void *item)
{
struct radix_tree_node *node = null, *slot;
unsigned int height, shift;
int offset;
int error;
bug_on(radix_tree_is_indirect_ptr(item));
/* make sure the tree is high enough. */
if (index > radix_tree_maxindex(root->height)) {
error = radix_tree_extend(root, index);
if (error)
return error;
}
slot = indirect_to_ptr(root->rnode);
height = root->height;
shift = (height-1) * radix_tree_map_shift;
offset = 0; /* uninitialised var warning */
while (height > 0) {
if (slot == null) {
/* have to add a child node. */
if (!(slot = radix_tree_node_alloc(root)))
return -enomem;
slot->height = height;
slot->parent = node;
if (node) {
rcu_assign_pointer(node->slots[offset], slot);
node->count ;
} else
rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
}
/* go a level down */
offset = (index >> shift) & radix_tree_map_mask;
node = slot;
slot = node->slots[offset];
shift -= radix_tree_map_shift;
height--;
}
if (slot != null)
return -eexist;
if (node) {
node->count ;
rcu_assign_pointer(node->slots[offset], item);
bug_on(tag_get(node, 0, offset));
bug_on(tag_get(node, 1, offset));
} else {
rcu_assign_pointer(root->rnode, item);
bug_on(root_tag_get(root, 0));
bug_on(root_tag_get(root, 1));
}
return 0;
}
插入的过程跟查找的过程非常相似其实,就是沿着树从上到下地找,某个位置没有元素就创建元素,直到出错或者把元素放到指定的slot中。
tag
内核的radix tree支持tag功能,就是给某个元素打一个tag。这个tag会影响该元素到基树根上所有元素。这样通过查看根元素是否有这个tag,就能判断根元素下的子元素中是否存在这种tag的元素。另外内核的基树提供了迭代所有设置过tag的元素的方法:radix_tree_for_each_tagged。